Revised Bloom’s Taxonomy (RBT) Table

<table>
<thead>
<tr>
<th>The Knowledge Dimension</th>
<th>The Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remember – retrieve relevant knowledge from long-term memory</td>
<td>2. Understand – Construct meaning from instructional messages, including oral, written, and graphic communication</td>
</tr>
<tr>
<td>3. Apply – Carry out or use a procedure in a given situation</td>
<td>4. Analyze – Break material into its constituent parts and determine how the parts relate to one another and to an overall structure or purpose</td>
</tr>
<tr>
<td>5. Evaluate – Make judgments based on criteria and standards</td>
<td>6. Create – Put elements together to form a coherent or functional whole; reorganize elements into a new pattern or structure</td>
</tr>
</tbody>
</table>

A. Factual Knowledge -
The basic elements students must know to be acquainted with a discipline or solve problems in the discipline.

B. Conceptual Knowledge -
The interrelationships among the basic elements within a larger structure that enable them to function together.

C. Procedural Knowledge -
How to do something, methods of inquiry, and criteria for using skills, algorithms, techniques, and methods.

D. Meta-Cognitive -
Knowledge of cognition in general as well as awareness and knowledge of one’s own cognition.

| The Cognitive Process Dimension Categories: Revised Bloom’s Taxonomy |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| **Remember** – retrieve relevant knowledge from long-term memory |
| **Understand** – Construct meaning from instructional messages, including oral, written, and graphic communication |
| **Apply** – Carry out or use a procedure in a given situation |
| **Analyze** – Break material into its constituent parts and determine how the parts relate to one another and to an overall structure or purpose |
| **Evaluate** – Make judgments based on criteria and standards |
| **Create** – Put elements together to form a coherent or functional whole; reorganize elements into a new pattern or structure |

| **Recognizing** |
| **Interpreting** |
| **Executing** |
| **Differentiating** |
| **Checking** |
| **Generating** |

- **Recognizing**
 - **Identifying**
 - **Definition/Example:** Locating knowledge in long-term memory that is consistent with presented material (e.g., recognize the dates of important events in U.S. history).

- **Interpreting**
 - **Clarifying**
 - **Paraphrasing**
 - **Representing**
 - **Translating**
 - **Definition/Example:** Changing from one form of representation (e.g., numerical) to another (e.g., verbal) (e.g., Paraphrase important speeches and documents).

- **Executing**
 - **Carrying Out**
 - **Definition/Example:** Applying a procedure to a familiar task (e.g., Divide one whole number by another whole number, both with multiple digits).

- **Differentiating**
 - **Discriminating**
 - **Distinguishing**
 - **Selecting**
 - **Definition/Example:** Distinguishing relevant from irrelevant parts or important from irrelevant parts of presented material (e.g., Distinguish between relevant and irrelevant numbers in a mathematical word problem).

- **Checking**
 - **Coordinating**
 - **Detecting**
 - **Monitoring**
 - **Testing**
 - **Definition/Example:** Detecting inconsistencies or fallacies within a process or product; determining whether a process or product has internal consistency; detecting the effectiveness of a procedure as it is being implemented (e.g., Determine if a scientist's conclusions follow from observed data).

- **Generating**
 - **Hypothesizing**
 - **Definition/Example:** Coming up with alternative hypotheses based on criteria (e.g., Generate hypotheses to account for an observed phenomenon).

- **Planning**
 - **Designing**
 - **Definition/Example:** Devising a procedure for accomplishing some task (e.g., Plan a research paper on a given historical topic).

- **Producing**
 - **Constructing**
 - **Definition/Example:** Inventing a product (e.g., Build habitats for a specific purpose).

<table>
<thead>
<tr>
<th>Summarizing</th>
<th>Inferring</th>
<th>Comparing</th>
<th>Explaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Abstracting</td>
<td>• Concluding</td>
<td>• Contrasting</td>
<td>• Constructing (models)</td>
</tr>
<tr>
<td>• Generalizing</td>
<td>• Extrapolating</td>
<td>• Mapping</td>
<td>Definition/Example: Constructing a cause-and-effect model of a system (e.g., explain the causes of important 18th Century events in France).</td>
</tr>
</tbody>
</table>

Definition/Example: Determining a point of view, bias, values, or intent underlying presented material (e.g., Determine the point of view of the author of an essay in terms of his or her political perspective).

Definition/Example: Abstracting a general theme or major point(s) (e.g., Write a short summary of the event portrayed on a videotape).

Definition/Example: Drawing a logical conclusion from presented information (e.g., In learning a foreign language, infer grammatical principles with examples).

Definition/Example: Detecting correspondences between two ideas, objects, and the like (e.g., Compare historical events to contemporary situations).

The Knowledge Dimension: Revised Bloom’s Taxonomy

| A. **Factual Knowledge** - The basic elements students must know to be acquainted with a discipline or solve problems in the discipline. | • Knowledge of terminology
• Knowledge of specific details and elements | **Example:** Technical Vocabulary, music symbols
Example: Major natural resources, reliable sources of information. |
| --- | --- | --- |
| B. **Conceptual Knowledge** - The interrelationships among the basic elements within a larger structure that enable them to function together. | • Knowledge of classifications and categories
• Knowledge of principles and generalizations
• Knowledge of theories, models, and structures | **Example:** Periods of geological time, forms of business ownership
Example: Pythagorean theorem, law of supply and demand
Example: Theory of evolution, structure of Congress |
| C. **Procedural Knowledge** - How to do something, methods of inquiry, and criteria for using skills, algorithms, techniques, and methods. | • Knowledge of subject-specific skills and algorithms
• Knowledge of subject-specific techniques and methods
• Knowledge of criteria for determining when to use appropriate procedures | **Example:** Skills used in painting with water colors, whole number division algorithm
Example: Interviewing techniques, scientific method
Example: Criteria used to determine when to apply a procedure involving Newton’s second law, criteria to judge the feasibility of using a particular method to estimate business costs |
| D. **Meta-Cognitive Knowledge** - Knowledge of cognition in general as well as awareness and knowledge of one’s own cognition. | • Strategic knowledge
• Knowledge about cognitive tasks, including appropriate contextual and conditional knowledge
• Self-knowledge | **Example:** Knowledge of outlining as a means of capturing the structure of a unit of subject matter in a text book, knowledge of the use of heuristics
Example: Knowledge of the types of tests particular teachers administer, knowledge of the cognitive demands of different tasks
Example: Knowledge that critiquing essays is a personal strength, whereas writing essays is a personal weakness; awareness of one’s own knowledge level |